A uniqueness theorem for minimal submanifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Submanifolds

Contents 1. Introduction 2 Part 1. Classical and almost classical results 2 1.1. The Gauss map 3 1.2. Minimal graphs 3 1.3. The maximum principle 5 2. Monotonicity and the mean value inequality 6 3. Rado's theorem 8 4. The theorems of Bernstein and Bers 9 5. Simons inequality 10 6. Heinz's curvature estimate for graphs 10 7. Embedded minimal disks with area bounds 11 8. Stable minimal surfaces ...

متن کامل

A Convexity Theorem For Isoparametric Submanifolds

The main objective of this paper is to discuss a convexity theorem for a certain class of Riemannian manifolds, so-called isoparametric submanifolds, and how this relates to other convexity theorems. In the introduction we will present the convexity theorems. In Section 2 we will describe the geometry of isoparametric submanifolds and in Section 3 we will relate this to the geometries of the ot...

متن کامل

A Convergence Theorem for Riemannian Submanifolds

In this paper we study the convergence of Riemannian submanifolds. In particular, we prove that any sequence of closed submanifolds with bounded normal curvature and volume in a closed Riemannian manifold subconverge to a closed submanifold in the C1 ,Q topology. We also obtain some applications to irreducible homogeneous manifolds and pseudo-holomorphic curves in symplectic manifolds.

متن کامل

A Uniqueness Theorem for Clustering

Despite the widespread use of Clustering, there is distressingly little general theory of clustering available. Questions like “What distinguishes a clustering of data from other data partitioning?”, “Are there any principles governing all clustering paradigms?”, “How should a user choose an appropriate clustering algorithm for a particular task?”, etc. are almost completely unanswered by the e...

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1968

ISSN: 0022-040X

DOI: 10.4310/jdg/1214428255